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Abstract. Slow dynamics and metastability are often seen in models with quenched disorder, but
rather harder to find in situations where no such disorder is present and energy or entropy barriers
must be generated dynamically. Using Monte Carlo simulations we show that the 3D four-spin
interaction Ising model, which possesses no quenched disorder, exhibits rather strong metastability
in a broad range of temperatures around its first-order transition point, due to the shape dependence
of excitations in the model and the resulting largeness of the associated critical droplets.

1. Introduction

Although models which do not contain quenched disorder and display slow dynamics and
metastability are rarer than those displaying metastability which do have quenched disorder,
some examples are known. One such interesting model exhibiting slow dynamics and
metastability, which is three dimensional, contains short-range interactions and does not have
any quenched disorder, was proposed some years ago by Shore et al [1, 2], who studied the
dynamics of a 3D ferromagnetic Ising model with antiferromagnetic next-nearest-neighbour
interactions (the SS model)

H = J1

∑
〈ij〉

σiσj − J2

∑
〈〈ij〉〉

σiσj . (1.1)

They showed that the low-temperature coarsening of a random quench asymptotically becomes
very slow and the characteristic length scale increases logarithmically in time. They also
showed that in their model the transition into the slow-dynamics regime is induced by a
corner-rounding transition at which the energy barriers should vanish. In the SS model the high-
temperature phase (liquid) cooled below the critical point Tc but above the corner-rounding
transition relatively quickly evolves toward the low-temperature crystalline phase. In more
physically realistic models one would expect that when brought to this temperature range,
liquid should not immediately crystallize or polycrystallize but, at least for some time, should
remain in a metastable state of supercooled liquid.

Recently it has been shown that a 3D four-spin Ising model (FSIM) with plaquette
interactions†

H = 1
2J1

∑
[i,j,k,l]

σiσjσkσl (1.2)

† Where σi = ±1 and summation is performed over all elementary plaquettes (i, j, k, l) of a simple cubic lattice of
linear size L with spins placed at the sites of the lattice.

0305-4470/00/244451+10$30.00 © 2000 IOP Publishing Ltd 4451



4452 A Lipowski and D Johnston

also displays metastability without quenched disorder [3]. In particular, it was shown that in
this model certain configurations are very long lived due to large energy barriers arising from
the shape dependence of excitations.

The FSIM is a special case (κ = 0) of the so-called gonihedric models, which have
recently been studied in the context of the lattice field theory [4, 5]

H = J1

[
2κ

∑
〈i,j〉

σiσj − κ

2

∑
〈〈i,j〉〉

σiσj +
1 − κ

2

∑
[i,j,k,l]

σiσjσkσl

]
. (1.3)

It is also noteworthy that for the particular ratio of couplings (J1/J2) = 1
4 the SS model falls

into the gonihedric family (this time with κ = 1). The ratio of terms in the gonihedric model is
chosen specially to give no area contribution from the boundary of spin domains, in antithesis
to the usual 3D Ising model. Closely related models have been studied with the aim of using
the boundaries of their spin domains to model random surfaces and a very rich phase structure
mapped out [6, 7].

In this paper we investigate the FSIM model further. Firstly, we show that in the low-
temperature regime the characteristic length l(t) increases very slowly in time. We argue that
this increase is likely to be logarithmic, namely l(t) ∼ ln t . Although the origin of the very
slow dynamics in our model is basically the same as in the SS model, the nature of the observed
transition to the slow-dynamics regime is quite different. Above the transition the model does
not enter a fast-dynamics regime (as the SS model does) but remains trapped in a supercooled
liquid phase. In addition, our estimation of the relevant characteristic time shows that energy
barriers exist even above the transition point. This strongly suggests that the transition to the
slow-dynamics regime in our model is not induced by a corner-rounding transition and that
energy barriers persist even in this regime.

There are other properties of the FSIM which are very interesting. Our simulations show
that in this model in the temperature range 3.4 < T < 3.9, depending on the initial conditions,
the model might be either in the liquid or the crystal phase. Using the thermodynamic
integration method we calculated the free energies of both phases and, as expected, the crossing
point (i.e., the first-order phase transition) appears approximately in the middle of the region
of metastability. Such metastable effects (hysteresis) frequently accompany first-order phase
transitions [8,9]. A distinctive feature of the metastability in the FSIM is that it is an extremely
strong effect. We show that even for temperatures close to the limits of hysteresis only a large
droplet of the stable phase injected into the metastable phase can divert the evolution of the
system into the stable phase. Spontaneous nucleation of such large droplets is an extremely
improbable event, and is well beyond the range of our simulations.

This paper is organized as follows. In section 2 we introduce the model, review its basic
properties and study the evolution of random quench. In section 3 we calculate the free energy
and the specific heat and present the time evolution of internal energy. In section 4 we discuss
metastability properties of our model. Section 5 contains our conclusions.

2. Basic properties and domain coarsening

The basic properties of the FSIM which are already known can be briefly described as follows.
The ground state is strongly degenerate with the degeneracy ∼23L (the ground state entropy per
site is thus zero). Monte Carlo simulations show [3,5] that upon heating of an arbitrary ground
state (crystal) configuration, the model appears to undergo a discontinuous phase transition
into the disordered phase (liquid) around T ∼ 3.9; the temperature scale is set as in [3] with the
Boltzmann constant put to unity. An important feature of the FSIM is the shape dependence
of excitations [3]: it is not only the size of the excitation which determines its energy (as in the
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(a) (b) (c)

Figure 1. In the FSIM the energy of an excitation (e.g., ‘down’ spins surrounded by ‘up’ spins)
is proportional to the total length of edges of the boundary of that excitation. To remove a cubic
excitation (a), the system is likely to proceed through configurations like those shown in (b) and
(c). It is easy to realize that in (b) and (c) the total length of edges and thus the energy of such
configurations is larger than that in (a). In the case (c) the energy increase is proportional to the
linear size of the excitation. In contrast, in a two-spin Ising model all configurations would have
the same energy (since the area of all configurations is the same) and removal of excitations would
proceed without climbing any energy barriers.

ordinary two-spin Ising model) but also its shape (see figure 1). This property, which holds
also for the SS model, gives rise to energy barriers which are in turn responsible for the very
slow dynamics of both models.

To study the evolution of the random configuration quenched to low temperature, we
measured the energy excess δE(t) = E(t) − E0 over the ground state energy E0 = −3. One
expects [2] that the inverse of this quantity sets the characteristic length scale l(t) of the system,
which roughly corresponds to the average size of domains. Moreover, there is convincing
evidence [10] that in many systems with nonconservative dynamics and a scalar order parameter
(i.e., conditions which are satisfied in our approach) l(t) increases asymptotically in time as
l(t) ∼ tn and n = 1

2 . However, in some systems l(t) is known to increase logarithmically,
l(t) ∼ log(t). These exceptional systems include some random (at the level of the Hamiltonian)
systems [11, 12], and the SS model for temperatures below the corner-rounding transition†.
Energy barriers developing in the non-random systems during the coarsening cause the slow
increase of l(t).

We performed standard [14] Monte Carlo simulations using the Metropolis algorithm
with a random sequential update. Unless stated otherwise, periodic boundary are imposed
throughout. The log–log plot of 1/δE(t) as a function of time for the FSIM is shown in
figure 2. The presented results were obtained for L = 40 but very similar behaviour was
observed for L = 30. From figure 2 it is clear that for T = 1.5 and 2.8 the asymptotic
slopes of the curves are much smaller than 1

2 and there is a tendency for these curves to bend
downwards. Taking into account the absence of models with n considerably smaller than 1

2 ,
and the existence of energy barriers in the FSIM of basically the same nature as in the SS
model, suggests that for the examined temperatures the characteristic length asymptotically
increases logarithmically in time. We cannot exclude, however, that in this temperature regime
the increase of l(t) is even more exotic, with neither logarithmic nor power-law increase. It
would appear that such a slow increase of l(t) takes place even for T = 3.3 and 3.4, but the
behaviour of l(t) for these temperatures is obscured by the metastability effects, since before
collapsing into the glassy phase the system remains in the liquid state for some time.

The difference between our model and the SS model becomes clear when we approach the
lower boundary of the metastable region which we roughly estimate to lie at T = Tl ∼ 3.4 by

† For additional confirmation of logarithmically slow growth of l(t) in the SS model see [13].
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Figure 2. The log–log plot of of 1/δE(t) as a function of time t (L = 40). The dashed line has a
slope 1

2 .

increasing the temperature. In the SS model for temperatures below the critical point but above
the corner-rounding transition thermal fluctuations roughen corners of domains and energy
barriers are no longer relevant. Consequently, the ‘ordinary’ dynamics with n = 1

2 is restored
and the system rapidly evolves toward the low-temperature phase. In contrast, in the FSIM for
3.4 < T < 3.9 the random quench does not even evolve toward the low-temperature phase but
remains disordered [3]. Since the low-temperature phase does exist at these temperatures (as
we have already mentioned, the transition from the low-temperature phase to the disordered
phase takes place around T = Tu ∼ 3.9), there should be some barriers which prevent the
liquid from collapsing. We conjecture that these barriers are of entropic origin and may be
related to the strong degeneracy of the ground state, which would explain why the behaviour of
our model is different from the SS model†. This phenomenon is discussed further in section 4.

3. Free energy and specific heat

The free energy encodes all the important thermodynamic information about a system. In
equilibrium statistical mechanics this quantity is defined as

f = −T/N ln

[ ∑
e−H/T

]
(3.1)

where N is the number of particles (lattice sites) and H is the Hamiltonian of the system with the
Boltzmann constant put to unity. However, calculation of the above-defined free energy using
Monte Carlo simulations is not straightforward and requires thermodynamic integration [14].
To calculate the free energy of our model in the liquid and crystal phases we used the following
equations:

fcryst = u − T

∫ T

0

c

T
dT fliq = −T s(∞) + T

∫ 1/T

0
u d

(
1

T

)
. (3.2)

† Entropic barriers are known to play an important role in glassy systems (see e.g., [15]).
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Figure 3. The free energy of liquid (+) and crystal (♦). Calculations were done for L = 30,
and 5000 Monte Carlo steps were used at each temperature. The integration steps were �T =
�(1/T ) = 0.025.

In the above equation c and u denote the specific heat and internal energy, respectively
(calculated using standard formulae [14]), and s(∞) = ln(2) is the entropy per site at infinite
temperature. The results of our calculations are shown in figure 3. We checked the stability
of our results with respect to the integration step �T (or �(1/T )), the system size L and the
number of Monte Carlo steps at each temperature.

In figure 3 one can see that the free energies of the crystal and of the liquid cross
around T = 3.6 and we expect that this is the temperature of the first-order phase transition.
The estimation of the transition temperature is in a good agreement with calculations done
using the cluster variational/Padé approximant method (CVPAM) [16]. However, due to the
strong metastability, which is discussed in more detail in the next section, the thermodynamic
transition at this point is very difficult to observe. Indeed, if we heat a crystal sample, we see
the boundary of the metastable region at Tu = 3.9, while cooling a liquid sample we see the
boundary at Tl = 3.4, which also agree well with the limits of metastability calculated in [16]
using CVPAM methods.

To overcome the metastability and confirm that a first-order transition does take place
around T = 3.6, we simulated the system with a nonuniform initial configuration by preparing
the system with one half in the crystal phase (e.g., all spins ‘up’) and the other half in the liquid
phase (all spins random); see figure 4. Such a choice facilitates the evolution toward the stable
phase (i.e., the one with the lowest free energy), but because both phases are present in the
initial configuration the system does not have to nucleate the stable phase. The results of
such simulations are shown in figure 5 where one can clearly see that the evolution of the
system depends on whether the temperature is above or below T = 3.6. For T < (>) 3.6
the crystal (liquid) phase gradually expands until the stable phase invades the whole system.
The identification of the final state is obtained from a comparison of its internal energy with
simulations which use a uniform initial state and confirmed from the visual inspection of
snapshot Monte Carlo configurations.
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Figure 4. Two-dimensional sections of initial configura-
tions used in our calculations. (a) An initial configuration
used in the calculations of internal energy shown in figure 5.
(b) An initial configuration with a droplet of crystal phase
injected into the liquid phase (see section 4.2). Spins in
the crystal/liquid part of the system are initially set ‘up’/at
random.
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Figure 5. The internal energy U as a function of time for L = 50 and an initial configuration
composed of 50% of crystal and 50% of liquid (see figure 4(a)). The steady-state values of U for
T = 3.5, 3.55 and for T = 3.65, 3.7 are identical (within error bars) with the internal energy of
crystal and liquid at corresponding temperatures.

To provide additional information about the FSIM, we measured the variance of the internal
energy and calculated the specific heat [14]. Our data are shown in figure 6. When we start
our simulations from the ground-state configuration (heating), the behaviour of the specific
heat appears to show a transition around Tu = 3.9, in agreement with earlier simulations [3,5].
However, under cooling this peak is shifted toward much lower temperature and it seems to
coincide with our estimation of Tl. Under cooling we do not observe any singularity in the
specific heat until T = Tl, which indicates that during cooling the system remains in the liquid
phase for T > Tl. Let us note that the locations of both peaks are almost unchanged after
increasing the system size by almost a factor of two. Moreover, for T < Tl the specific heat
is slightly larger upon cooling than upon heating. This is in agreement with the fact that in
this temperature range the model has slow dynamics and cannot reach the crystal phase within
numerically accessible computing time, for which the specific heat is very small.
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Figure 6. The specific heat calculated during (i) heating for L = 24 (♦) and L = 40 (×) and
(ii) cooling for L = 24 (+) and L = 40 (�). For each temperature and system size we made runs
of 104 Monte Carlo steps plus 103 Monte Carlo steps for relaxation.

4. Metastability

Results presented in the previous sections suggest that in the temperature range Tl < T < Tc

the system might remain in either the liquid or the crystal phase. In the present section we
present some additional results concerning the (meta-) stability of the liquid and crystal phases.

4.1. Characteristic times

We measured various characteristic times imposing different initial and boundary conditions
and monitoring the evolution toward a final state. To check the stability of the liquid (τliq),
we used a random initial configuration and simulated the system until the energy reached
E = −2.3†. To calculate τliq we made 100 independent runs. Our results for T = 3.5 are
shown in figure 7 and they suggest that the escape time increases at least exponentially with
the system size.

To check the stability of the crystal, one should measure the time (τ+) needed for the
crystal to be transformed into the liquid. It would be particularly interesting to examine the
size dependence of τ+ for 3.6 < T < 3.9, i.e., for temperatures where the crystal is metastable.
We have found, however, that this quantity increases very rapidly with the system size and in
this temperature range it is virtually impossible to increase the system size beyond L = 6. The
stability of this phase might be also inferred from other measurements we made in which we
estimated the time (τ+−) needed to shrink a cubic excitation of size L. This technique parallels
that which has already been applied to the SS model [2]: the initial configuration has ‘up’
spins at the boundary of the cube of size L + 2 (which are kept fixed) and ‘down’ spins inside
this cube. Simulations are performed until the magnetization of the interior of the cube decays
to zero and the time needed for such a run is recorded. To calculate τ+− at a given temperature
we made 100 independent runs. Our results for T = 3.6 (figure 7) suggest that τ+− increases

† This value is chosen rather arbitrarily, but once the system reaches this energy it does not return to the liquid phase.
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Figure 8. The inverse of the characteristic times τliq (+) and τ+ (♦) as a function of temperature.
The plotted results are obtained by extrapolation of the finite-size data to the thermodynamic limit.

approximately exponentially with L, whereas above the corner-rounding transition in the SS
model one expects τ+− ∼ L2 [2], in which case the data in figure 7 would bend considerably
downwards. This also confirms the stability of the crystal since it is clear that bringing the
crystal (a homogeneous, low-energy configuration) into the liquid is a slower process than
shrinking an excitation. Similar size dependence of τliq and τ+− was also observed for other
temperatures in the interval 3.4 < T < 3.9.

We also measured the characteristic times τliq and τ+ outside the interval 3.4 < T < 3.9.
Simulations were performed for several values of system size L and the results were extrapo-
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Figure 9. The internal energy U as a function of time for T = 3.5. The initial configuration
consists of a droplet of crystal phase of size M injected into the liquid phase.

lated to the thermodynamic limit (L → ∞) using a simple fit†. These extrapolated values are
shown in figure 8. One can see that outside this temperature range τliq and τ+ are definitely
finite and they seem to diverge upon approaching T = 3.4 from below (τliq) and T = 3.9 from
above (τ+).

4.2. Droplets of a stable phase

The numerical data presented in the previous section suggest that for 3.4 < T < 3.9 the
model has two different phases of effectively infinite lifetime. Such a result would be in
disagreement with the result that in short-range interacting systems metastability is only a
quantitative effect [8, 9]. In this section we show, however, that data presented in figures 7
and 8 are misleading and in the thermodynamic limit (L → ∞) the characteristic times τliq

for T < 3.6 and τ+ for T > 3.6 should be finite. The timescale of these metastable effects is,
however, enormously long in comparison with the length of our simulations.

One expects that metastable phases have only a finite lifetime due to droplet nucleation.
When a sufficiently large droplet of stable phase nucleates inside a metastable phase, it diverts
evolution of the system toward a stable phase. Since the critical (i.e., minimal) droplet size
is finite, there is a finite probability of spontaneous nucleation of such droplets and thus the
lifetime of a metastable phase is also finite.

To check whether such a mechanism operates in the FSIM, we monitored the evolution of
the system with droplets introduced by hand into the initial configuration (see figure 4). Our
results for T = 3.5 are shown in figure 9. One can see that when a droplet of the crystal is
sufficiently small (of linear size M = 18, 24), the system after some transient ends up in the
liquid phase. However, a large droplet of size M = 36 diverts evolution of the system toward
the more stable phase. We performed similar simulations to examine the (meta-) stability of
the crystal phase. Setting T = 3.8 we observed that droplets of liquid of size M � 24 divert
evolution of the crystal phase toward the stable liquid phase.

† We plotted the results for finite L as a function of x = 1/L and then used a parabolic fit to extrapolate the value at
x = 0.
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The above results show that the droplet-nucleation mechanism is effective in the FSIM
and the metastable phases are of finite lifetime. However, the important question is how long
this lifetime is. This quantity is determined by the inverse of the probability of the spontaneous
nucleation of critical droplets. It is clear that for computationally accessible systems (L ∼ 100)
spontaneous nucleation of crystal droplets of linear size M ∼ 30 is an extremely unlikely event,
which takes place on astronomical timescales. We should emphasize that this does not mean
that our model predicts such a lifetime of metastable liquids. Since the nucleation of droplets
is basically a local event, its probability for macroscopic systems increases merely due the
system size (droplets might nucleate independently in many places).

The radius of critical droplets presumably vanishes upon approaching the limits of
hysteresis (i.e., T = 3.4 and 3.9). Thus, very close to these limits one should be able to
observe finite-lifetime effects such as the spontaneous collapse of liquid into the crystal or
disordered phase.

5. Conclusions

In the present paper we have studied the 3D Ising model with four-spin interactions. The
Hamiltonian of this model is homogeneous, non-frustrated and contains only short-range
plaquette interactions. Nevertheless, we found that this model has very interesting dynamical
and thermodynamical properties. In particular, our numerical results suggest that the model
displays very slow coarsening dynamics in its low-temperature phase. Moreover, due to very
strong metastability in the temperature range 3.4 < T < 3.9 the model can remain in either a
crystal or liquid phase, depending on how it has been prepared. We have shown that a droplet-
nucleation mechanism is, however, still effective and thus that metastability in this model is a
finite-size, but extremely strong, effect. The timescale of spontaneous nucleation for critical
droplets is extremely large and lies well beyond the timescales of our simulations.
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